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We adapt an instance model of human memory, Minerva 2, to simulate retrospective revaluation. In the
account, memory preserves the events of individual trials in separate traces. A probe presented to memory
contacts all traces in parallel and causes each to become active. The information retrieved from memory
is the sum of the activated traces. Learning is modelled as a process of cued-recall; encoding is modelled
as a process of differential encoding of unexpected features in the probe (i.e., expectancy-encoding). The
model captures three examples of retrospective revaluation: backward blocking, recovery from blocking,
and backward conditioned inhibition. The work integrates an understanding of human memory and complex
associative learning.
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In retrospective revaluation, unpresented but associatively acti-
vated cues are associated. One example of retrospective revalua-
tion is backward blocking. A simple demonstration of backward
blocking involves two successive training phases followed by a
test. In phase one of training, a cue compound, AB, is presented
followed by an outcome, X. In phase two, A is presented followed
by X. Backward blocking is observed if, following training, B is a
weak exciter of X (Shanks, 1985). Of course, the result contradicts
common sense. In the training phases, B reliably predicts X. Yet,
subjects behave as if the opposite was true (i.e., that B does not
predict X). Retrospective revaluation implicates a role of memory in
learning. Van Hamme and Wasserman (1994; see also Dickinson &
Burke, 1996) argued that in phase one of the backward blocking
procedure a within-compound association forms between A and B.
In phase two, the within-compound association causes A to retrieve
B. Because B is retrieved, it can develop an inhibitory link to X.
Melchers, Lachnit, and Shanks (2004) proposed a different albeit
related memory-based explanation. In their account, the presenta-
tion of A in phase two elicits covert rehearsal of phase one trials,
and backward blocking falls out of the covert rehearsal process.
Here, we develop a novel explanation of retrospective revaluation

using an instance model of human memory (Hintzman, 1984,
1986, 1988).

Instance theories of learning and memory operate from a
premise that the individual experience (i.e., the instance) is the
primitive unit of knowledge and that learning represents the accu-
mulation and deployment of instances from memory. Brooks
(1978, 1987) was amongst the first to champion the view. Medin
and Schaffer (1978) were amongst the first to formalize it.
Hintzman’s (1984, 1986, 1988) Minerva 2 model and Nosofsky’s
(1986) Generalized Context Model represent formal first-
generation accounts of the instance-based view of memory.
Kruschke’s (1992, 1996, 2001) ALCOVE, ADIT, and EXIT mod-
els and Logan’s (1988, 2002) ITAM model are modern extensions
of the exemplar-based view of learning. Whereas different
instance-based theories differ in their details, all agree that the
instance is the fundamental unit of knowledge and that a compe-
tent theory of learning must include an account of how instances
are stored and retrieved from memory.

In this paper, we adapt Hintzman’s (1986, 1988) Minerva 2
instance-based model of human memory to an analysis of retro-
spective revaluation. In short, we propose that traces of individual
trials are stored in memory, that learning is driven by a process of
expectancy-encoding, that decisions about associative strength fall
out of a process of parallel cued-recall, and that retrospective
revaluation follows from a process of trace-inversion at retrieval.

Minerva 2

Minerva 2 is a classic instance-based theory of human memory.
The theory was developed to understand episodic-recognition and
frequency-judgement (Hintzman, 1984, 1986, 1988). Minerva 2
has since been applied to a wide range of phenomena from the
study of human memory (Arndt & Hirschman, 1998; Clark, 1997;
Dougherty, Gettys, & Ogden, 1999; Goldinger, 1998; Hintzman,
1987; Jamieson & Mewhort, 2009a, 2009b, 2010; Jamieson, Holmes,
& Mewhort, in press; Kwantes, 2005; Kwantes & Mewhort, 1999;
Kwantes & Neal, 2006).
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Informally, Minerva 2 is a theoretical framework that articulates
the memorial processes involved in representing, storing, and
retrieving instances of experience. A first central assumption of the
model is that each individual experience is represented in memory
by a unique trace. A second central aspect of Minerva 2 is the
retrieval process. In the model, retrieval is cue-driven and parallel.
When a cue (i.e., a memory probe) is presented, it activates all
traces in memory. Each trace’s activation is in proportion to its
similarity to the probe. The information retrieved from memory is
the sum of the activated instances, a structure called the echo.
Because the probe retrieves traces similar to it, a probe will
retrieve a representation of itself from memory. Because a probe
retrieves whole traces, a probe also retrieves events it has co-
occurred with in the past. This is the mechanism that Minerva 2
uses to accomplish cued recall, and it is the mechanism that we
will use to model associative learning.

Formally, Minerva 2 is a computational theory of memory. In
the model, a stimulus, or event, is represented by a vector of n
elements or features. These features can refer to specific stimulus
properties (e.g., has wings) or can be read as information states
(e.g., neural potentials). Each feature takes one of three discrete
values: !1, "1, or 0. A value of !1 or "1 indicates the feature
is relevant to the stimulus description; a value of 0 indicates the
feature is either indeterminate or irrelevant to the stimulus descrip-
tion.

Co-occurrence of events is represented by summing event rep-
resentations to form a single vector. For example, if two events
A # [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0] and B # [0, 0, 0, 0, 0, 0, 0,
0, 0, "1, 1, 0] co-occur, their co-occurrence is represented as
AB # A ! B # [0, 0, 0, 0, 0, 1, 1, 0, 0, "1, 1, 0]. Generally, a
representation of A shares no features with B (as in the example).

Memory, M, is a two dimensional matrix. Each row in the
matrix stores an instance. Each column corresponds to a feature.
Encoding an event vector, E, involves copying the elements of E
to a row in the memory matrix. The model accommodates varia-
tion in the quality of encoding by varying the probability with
which each element in a stimulus vector is copied to memory. The
probability of storing each element in memory is a model param-
eter, L. An element that is not stored is copied to memory as a
value of 0. Thus, as L increases, items are stored more completely
in memory.

In the model, all retrieval is cued. When a cue is presented, it
activates each memory trace in proportion to its similarity to the
cue. In Minerva 2, similarity of the probe, P, to trace i in memory,
Mi, is computed as,

Si !

!
j#1

n

Pj " Mij

nR
, (1)

where Pj is the value of the jth feature in the probe, Mij is the value
of the jth feature of the ith row in memory, n is the number of
features in the vectors under comparison, and nR is the number of
nonzero features in the vectors under comparison. The measure
behaves similarly to the Pearson correlation coefficient: similarity
is !1 when the row is identical to the probe, is "1 when the row
is opposite to the probe, and is 0 when the row is orthogonal to the
probe.

Trace i’s activation, Ai, is a nonlinear function of its similarity
to the probe,

Ai ! Si
3. (2)

In principle, the probe activates all traces in memory. However,
the nonlinear activation function ensures that traces very similar to
the probe are activated much more strongly than traces that are
moderately similar or that are dissimilar to the probe.

The information that a probe retrieves from memory is a vector,
C, called the echo. Element j in the echo is equal to the sum of the
corresponding weighted elements in the i # 1 . . . m traces in
memory,

Cj ! !
i#1

m

Ai " Mij. (3)

Hintzman (1986) illustrated how to use the echo to simulate
cued-recall. Let j # 1 . . . k in a trace stand for a name and j #
(k ! 1) . . . n stand for a face. To retrieve a face given a name, a
probe is constructed that has features j # 1 . . . k filled in and
features j # (k ! 1) . . . n empty (i.e., filled with zeroes). Given
that the name represented in features j # 1 . . . k finds a match in
memory, features j # (k ! 1) . . . n in the echo will approximate
the features of the associated face. Retrieval of a name given a face
can be done in the opposite fashion.

Quality of cued-recall is indexed by, first, normalizing values in
the echo,

Cj
$ !

Cj

max"C1..n"
, (4)

and, then, computing the similarity between the normalized echo
and the target associate, X:

X"P !

!
j#1

n

Xj " Cj
$

nR
, (5)

where X is a target associate, P is the probe, and nR is the number
of nonzero features in X. The value X"P is read “retrieval of X
given P”. The larger that X"P is, the better that X is retrieved by P.
The value X"P behaves like a Pearson correlation coefficient. If the
probe retrieves X perfectly, X"P # 1. If the probe does not retrieve
X, X"P # 0. If the probe retrieves a perfect inverse (i.e., opposing)
representation of X, X"P # "1.

Now that we have described the Minerva 2 model, we move to
a description of how we adapted the model to the problem of
associative learning.

Minerva-AL

Like most theories of human memory, Minerva 2 assumes
independent encoding of items. For example, in a recognition
memory experiment, each studied item is stored to a row in the
memory matrix, without regard for the order in which list-items
were presented or potential encoding dependencies amongst list-
items. The same is true in studies of categorization and cued-recall.
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Whereas independent encoding of list-items allows simulation
of performance in memory experiments, it is insufficient to sim-
ulate learning: In a learning experiment, the problem of interest is
how memory of events from preceding trials influences processing
of and memory for events on a present trial. Therefore, we address
learning by adapting the Minerva 2 model so that memory of a
present trial is influenced by memory of preceding trials. We will
call the adapted model, Minerva-AL.

The key difference between Minerva-AL and Minerva 2 is in
how Minerva-AL encodes an experience. In Hintzman’s (1984,
1986) original Minerva 2 model, memory for a trial is established
by copying the event vector to a row in the memory matrix. In
Minerva-AL, memory for a trial is determined as the difference
between the event vector and the echo retrieved. By encoding
differences between the event vector and the echo, memory of
preceding trials (i.e., represented in the echo) has influence on
what is learnt on the trial (i.e., represented in the event vector). In
short, unexpected information (i.e., information in the event vector
that is not retrieved in the echo) is encoded more strongly than
expected information (i.e., information in the event vector that is
retrieved in the echo). Because the encoding operation in
Minerva-AL is driven by a concept of expectancy, we call the
operation expectancy-encoding.

In Minerva-AL, expectancy-encoding is implemented using
subtraction,

Mij ! Ej # Cj
$, (6)

where i indexes the row in memory, j indexes the features of the
vector representations, M is the memory matrix, E is the event
vector, and C$ is the echo. We retain Minerva 2’s probabilistic
encoding rule: Mij # Ej – Cj

$ with probability L and Mij # 0 with
probability 1 – L.

To illustrate expectancy-encoding, imagine a learning trial
where A is presented followed by X. In the example, A and X are
represented by four features so that A # [1, 1, 0, 0] and X # [0, 0,
1, 1]. Because the trial presents A followed by X, the event vector,
E, is equal to E # A ! X # [1, 1, 1, 1]. Suppose that on trial i in
the experiment, A is presented and retrieves C$ # [0.4, 0.1, 0.6,
1.0]. The values in the third and fourth elements of the echo show
that the model retrieves a strong expectation for X. According to
expectancy-encoding (see Equation 6), the information stored to
row i in memory will equal Mi # E – C$ # [0.6, 0.9, 0.4, 0.0]. Note
that the most anticipated feature in the echo (feature 4) is encoded
as a zero, the second most anticipated feature in the echo (feature
3) is encoded as the second smallest absolute value, and so on.

An important corollary of expectancy-encoding is that
Minerva-AL appreciates and encodes violations of its expecta-
tions. To illustrate, consider a variation on the example from the
preceding paragraph. On trial i, A retrieves C$ # [0.4, 0.1, 0.6,
1.0], just as before. However, X is not presented. Thus, in contrast
to the preceding example, E # A # [1, 1, 0, 0]. In this scenario, the
information stored to row i in memory is equal to Mi # E – C$ #
[0.6, 0.9, "0.6, "1.0]. Note that, now, the information encoded to
the third and fourth elements of row i in memory take the opposite
sign of the original representation for X # [0, 0, 1, 1]. This inverse
representation of X records the fact that the model expected X but
that X did not occur. This property of the model will be pivotal for
our eventual explanation of retrospective revaluation.

Of course, we are not the first to argue for the importance of
expectancy-encoding. Kamin (1969) and von Restorff (1933) iden-
tified surprise as a key principle of learning and memory.
Whittlesea and Williams (2000, 2001a, 2001b, 2001b) used vio-
lation of expectancy to explain memory-based inference. Rescorla
and Wagner (1972) used surprise to model learning in cue com-
petition.

The expectancy-encoding operation required two additional
changes to the Minerva 2 model. First, the similarity rule in
Minerva 2 (see Equation 1) is tailored to the situation where
features of stimulus and memory representations can take one of
only three discrete values (!1, 0, "1), but expectancy-encoding
allows feature values to vary continuously, between "2 and ! 2.
We resolve the problem using Kwantes’ (2005) solution. He com-
puted similarity between a probe and memory trace using the
cosine measure of similarity:

Si !

!
j#1

n

Pj " Mij

#!
j#1

n

Pj
2#!

j#1

n

Mij
2

, (7)

where Pj is the value of the jth feature in the probe, Mij is the value
of jth feature of the ith row in memory, and n is the number of
features in the vectors under comparison. The cosine measure of
similarity is consistent with the similarity measure used in the
Minerva 2 model. However, it normalizes over vector length and,
thus, handles the extended range of values in memory traces that
follow from the expectancy-encoding rule.

A final change to the model involved adding a randomly sam-
pled value from the interval ["0.001, !0.001] to each element in
the echo. The change was pragmatic. Minerva 2 is a model of
human memory and so it was designed for single-trial learning. If
noise is not added to the echo, Minerva-AL learns too quickly
(often, in a single trial).

In the simulations that follow, we simulate associative learning
as an example of cued-recall: presenting a cue retrieves an echo,
and the echo is assessed for the target outcome. To ease exposition,
we denote a cue’s ability to retrieve an outcome as a conditional.
For example, X"B refers to “retrieval of X given B” and X"AB refers
to “retrieval of X given AB”. Positive growth in conditional re-
trieval corresponds to a growing excitatory association between
the cue and outcome; negative growth corresponds to a growing
inhibitory association between the cue and outcome.

In all of the simulations that follow, we use Hintzman’s (1986)
scheme for stimulus representation. Events of a trial are coded in
an event vector composed of five successive 20-element subfields
(i.e., an event vector has 100 elements in total). The first, second,
third, and fourth subfields correspond to cues A, B, C, and D,
respectively. The fifth subfield corresponds to the target outcome
X. We represent cues and outcomes by assigning values of !1 and
"1 with equal probability to each of the 20 relevant elements in
the stimulus representation. Thus, A is represented by assigning a
value !1 or "1 to each of the first 20 elements of a 100-element
vector; all remaining elements take a value zero. Stimulus B is
represented by assigning a value !1 or "1 to elements 21 through
40 of a 100-element vector, with all other values zero. Stimulus C
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is represented by assigning a value !1 or "1 to elements 41
through 60 of a 100-element vector, with all other values zero.
Stimulus D is represented by assigning a value !1 or "1 to each
of the elements 61 through 80 of a 100-element vector, with all
other values 0. Outcome X is represented by assigning a value !1
or "1 to each of the elements 81 through 100 of a 100-element
vector, with all other values 0.1

Despite the computational differences between Minerva-AL and
Minerva 2—with the critical distinction of expectancy-encoding—
Minerva-AL preserves the spirit of its parent theory. Each learning
trial is recorded in memory as a unique trace. At retrieval, the
probe contacts all traces in parallel and a weighted sum of the
information in memory is retrieved (i.e., the echo). Finally, infor-
mation retrieved by a cue is quantified from the echo.

Simple Associative Learning

We first apply Minerva-AL to five elementary learning proto-
cols: acquisition, extinction, backward conditioning, blocking, and
conditioned inhibition. We use these simulations to illustrate the
model and to show it handles basic associative learning.

Acquisition/extinction. In a simple associative learning pro-
cedure, a cue, A, is presented followed by an outcome, X. After
several pairings, the cue elicits anticipation of the outcome: a result
called acquisition. If the cue is then presented alone (i.e., without
the outcome), its ability to elicit anticipation of the outcome fades:
a result called extinction.

We applied Minerva-AL to an acquisition/extinction protocol
that included 200 trials. Trials 1 through 100 were acquisition trials
(i.e., A presented followed by X); Trials 101 through 200 were
extinction trials (i.e., A presented alone).

At the outset of each trial, memory was probed with A and an
echo was retrieved. Learning was recorded as retrieval of X given
A. The trial was completed by storing a trace in memory. For
acquisition trials, the event vector, E, was equal to A ! X; for
extinction trials, E # A.

We conducted 25 independent simulations of the procedure for
each of three levels of L (we varied L to illustrate that learning in
the theory is modulated-by but is not dependent upon particular
values of the parameter). Figure 1 shows retrieval of X given A
over the 200 trials of the protocol. The curves in Figure 1 are

averaged over 25 independent replications of the protocol. As
shown, Minerva-AL produced negatively accelerated acquisition
and extinction curves with the rate of learning systematically
correlated with L. The curves match the characteristic shapes of
averaged learning curves.

To gain a better understanding of how the model learns, we
inspected the trial-to-trial mechanics of the simulation. At the
outset of a simulation, memory was empty (a matrix of 0s).
Consequently, on Trial 1, A retrieved only noise into the echo.
Because the echo contained only noise, retrieval of X given A was
approximately zero (M # 0.003, SE # .0167) and elements in the
event vector (i.e., E # A ! X) were encoded strongly to memory
(see Equation 6). On Trial 2, A retrieved a noisy version of the
trace stored on the preceding trial. Because the trace included
information about the pairing of A and X on Trial 1, retrieval of X
given A improved on Trial 2. On Trial 3, A retrieved the traces
from both Trials 1 and 2. Because the two traces were summed into
the echo, noise in the echo was reduced and a more complete
representation of X was retrieved. Because each additional trace
was summed into the echo, there was a systematic and cumulative
benefit over successive trials.

On Trial 101, cue A retrieved a near-perfect representation of
outcome X. However, X was not presented. Consequently, the trace
that was stored to memory included a representation of A paired
with an inverse representation of X (i.e., -X). On Trial 102, cue A
retrieved the traces from Trials 1 through 101. Because the inverse
representation of X from Trial 101 was retrieved in the echo,
retrieval of X given A suffered; note the drop in X"A on Trial 102.
This process cumulated over the remaining extinction trials and
produced a corresponding cumulative impairment of X"A. Eventu-
ally, retrieval of X given A was statistically equal to zero indicating
that A had ceased to elicit anticipation of X altogether.

We conducted additional simulations of acquisition and extinc-
tion. In one series of simulations, we varied the number of trials in
the two phases of the design. Results of these simulations were
consistent with the results of the simulations reported in Figure 1:
X"A approached 1 in acquisition and 0 in extinction. In another
series of simulations, we varied the cue-outcome contingency (i.e.,
the probability of X following A). As in the simulations from
Figure 1, Minerva-AL predicted asymptotic learning of X"A. How-
ever, the asymptotic value of X"A closely approximated the prob-
ability of X given A in the simulated protocol. In yet another series
of simulations, we varied the amount of noise added to the echo:
For example, rather than add a value from the range ["0.001,
!0.001] to each element in the echo, we added a value from the range
["0.1, !0.1]. Broadening the range of noise slowed learning; shrink-
ing the range did the opposite.

The results of the simulation in Figure 1 show that Minerva-AL
accommodates acquisition and extinction. We now turn to a dem-
onstration that the model handles the distinction between forward
and backward conditioning.

Backward conditioning. In a backward conditioning proce-
dure, an outcome, X, is presented ahead of a cue, A. At test, the

1 The results of the simulations in this article do not depend on using the
!1/"1/0 feature values as in Hintzman’s (1986, 1988) scheme. Simula-
tions using other schemes (e.g., sampling values from a Gaussian) give
similar results.

Figure 1. Acquisition (Trials 1 – 100) and extinction (Trials 101 – 200).
Means are computed from 25 independent replications of the procedure.
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learner treats A as a weak or inhibitory predictor of X. The result
is rational: in training, A signals that the outcome is ended. The
backward conditioning procedure is important because it illustrates
that association is asymmetric. Following training with A followed
by X, A is a better predictor of X than X is of A. If Minerva-AL is
to serve as a model of learning, it should handle the asymmetry.

We applied Minerva-AL to both a forward and a backward
conditioning protocol. Both protocols included a training phase
followed by a test. In the forward training protocol, A was pre-
sented followed by X. In the backward training protocol, X was
presented followed by A. Following the training phase, we mea-
sured retrieval of X given A (i.e., X"A). If Minerva-AL distin-
guishes forward from backward conditioning, A ought to be a
better retrieval cue for X following the forward than following the
backward conditioning procedure.

We conducted simulations of the forward and backward condi-
tioning procedures, 25 replications of each procedure for each of
three levels of L. Following training with the forward conditioning
procedure, X"A was equal to .49 (SE # .03), .90 (SE # .02), and
0.99 (SE # .00), for L # .33, .67, and 1.0, respectively. By
contrast, following training with the backward training procedure,
X"A was equal to .21 (SE # .01), .34 (SE # .03), and .73 (SE #
.03), for L # .33, .67, and 1.0, respectively. The simulations
conform to the expected difference: A is a better retrieval cue for
X in the forward than in the backward conditioning procedure.

The simulations demonstrate that Minerva-AL distinguishes for-
ward from backward conditioning: a prediction of Minerva-AL
that is at odds with Minerva 2. In Minerva 2, encoding is inde-
pendent of retrieval. Because of that independence, Minerva 2
predicts that X"A will be equal in the forward and backward
conditioning procedures.

Our simulations show that the Minerva-AL model accommo-
dates simple associative learning. We now turn to a more sophis-
ticated learning problem: blocking.

Blocking. Blocking illustrates a process of cue-competition in
learning. A classical blocking procedure involves two successive
training phases followed by a test (Kamin, 1969; Rescorla &
Wagner, 1972). In phase one of training, a cue, A, is presented
followed by an outcome, X. In phase two of training, a cue
compound, AB, is presented followed by X; critically, the cue
compound presented in phase two, AB, includes the cue presented
in phase one of the procedure (in this example, A). Following
phase two, retrieval of X given B is tested. A schematic of the
procedure is provided in the top row of Table 1. The second and
third rows of Table 1 describe relevant control procedures. Block-
ing is demonstrated if retrieval of X given B is weaker in the
blocking condition than in the control conditions. Minerva-AL

must accommodate blocking to stand as competent account of
learning.

We simulated the blocking and control procedures described in
Table 1, 25 independent replications of each condition and for each
of three levels of the encoding parameter L. As shown in Table 1,
Minerva-AL anticipates the blocking effect (i.e., X"B was smaller
in the blocking condition than in the control conditions). The
magnitude of blocking covaries with L.

Minerva-AL’s explanation for blocking is straightforward. In
phase one of training, A is established as a retrieval cue for X. In
phase two, the compound cue AB retrieved X into the echo.
Because AB retrieved X into the echo, the biggest discrepancy
between the echo and the event vector was the presence of B. The
trace stored to memory, therefore, included a strong representation
of B but a weak representation of X. Consequently, at test, B
retrieved a weak representation of X.

Thus far, we have showed Minerva-AL handles acquisition,
extinction, backward conditioning, and blocking. Next, we test
Minerva-AL against the problem of conditioned inhibition.

Conditioned inhibition. Conditioned inhibition demonstrates
an organism can learn that an outcome will not be presented. A
typical conditioned inhibition procedure involves a training phase
followed by a test. The training phase includes two types of trials.
For half of the training trials, a cue A is presented followed by an
outcome X. For the other half of the training trials, a cue compound
AB is presented without X. The two types of trials are intermixed.
At test, retrieval of X given B is tested. Conditioned inhibition is
observed if, following training, B behaves as a conditioned inhib-
itor of X whereas A behaves as a conditioned exciter of X.

We simulated the conditioned inhibition procedure, 25 indepen-
dent replications for each of three values of L (i.e., L # .33, .67,
and 1.0). Following the training procedure, we measured both
retrieval of X given B and retrieval of X given A. For L # .33, .67,
and 1.0, retrieval of X given B was equal to ".33 (SE # .02), ".49
(SE # .03), and ".73 (SE # .04), respectively. For L # .33, .67,
and 1.0, retrieval of X given A was equal to .93 (SE # .02), .96
(SE # .02), and .97 (SE # .01), respectively. Because retrieval of
X given B was reliably less than zero, we conclude that
Minerva-AL handles the problem of conditioned inhibition.

In other laboratory demonstrations of conditioned inhibition,
researchers use a summation test. This involves two training
phases. In phase one of training, the learner is presented with the
intermixed A 3 X and AB 3 nothing trials. In phase two of
training a novel cue, C, is presented followed by the outcome, X.
At test, X"BC, X"C, and X"CD are assessed (i.e., D is a novel cue not
presented in training). If B is a conditioned inhibitor of X, then
X"BC ought to be less than both X"C and X"CD (e.g., Rescorla,

Table 1
Simulation of Blocking: Retrieval of X Given B as a Function of L (Standard Errors in Parentheses)

Training Learning rate (L)

Condition Phase 1 Phase 2 Test 0.33 0.67 1.00

Blocking 50 A3 X 50 AB3 X X"B .24 (.02) .22 (.02) .18 (.02)
Control (1) 50 AB3 X X"B .51 (.02) .69 (.02) .84 (.02)
Control (2) 50 C3 X 50 AB3 X X"B .54 (.02) .69 (.02) .85 (.02)

Note. Means and standard errors are computed from 25 independent replications of the procedure. Numbers next to cues denote number of trials.
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1969, 1971). We tested Minerva-AL in the summation test. The
theory made the appropriate prediction. Retrieval of X"BC was less
than retrieval of X"CD and retrieval of X"CD was less than retrieval
of X"C. The differences were present for all values of L.

To understand why Minerva-AL predicts conditioned inhibition
of B, we inspected the trial-to-trial dependencies of the simulation.
For trials in which A was presented followed by X, traces recorded
a representation of A’s co-occurrence with X. Because A was part
of the probe on AB trials, AB retrieved X. Because X was expected
but not presented, a trace was added to memory that recorded !A
and !B paired with -X. At test, B retrieved those traces and,
consequently, included a negative representation of X in the echo.

The simulations reported, thus far, are helpful in that they afford
a clear description of the model’s mechanics. However, none of
the learning procedures we have simulated challenge existing
models. To better challenge Minerva-AL, we now apply it to three
examples of retrospective revaluation: backward blocking, recov-
ery from blocking, and backward conditioned inhibition. We will
show that Minerva-AL handles retrospective revaluation.

Complex Learning: Retrospective Revaluation

Most classical theories of learning assert that a cue must be
present to acquire or lose associative strength with an outcome
(e.g., Mackintosh, 1975; Pearce & Hall, 1980; Rescorla & Wagner,
1972; Wagner, 1981). However, demonstrations of retrospective
revaluation contradict the assertion. One demonstration of retro-
spective revaluation is backward blocking.

The backward blocking procedure includes two successive
training phases followed by a test. In phase one of training, a
compound cue AB is paired with an outcome X. In phase two of
training, A is paired with X. After phase two of training, retrieval
of X given B is tested. Backward blocking is observed if following
phase two of training retrieval of X given B is worse in the
backward blocking condition than in the control conditions. The
top row in Table 2 outlines the backward blocking procedure.
Rows 2 and 3 in Table 2 represent relevant control procedures.

At first blush, backward blocking would appear to imply infer-
ential reasoning: “I learnt in phase one that the combination of A
and B predicts X. But, in phase two, I learnt that A alone predicts
X. Given the two contingencies, I will infer that, despite initial
appearances, B must not have been a predictor of X in phase one
after all.” Despite such an obvious solution to explaining the result
with humans, backward blocking has been observed in the behav-
iour of both honeybees (Blaser, Couvillon, & Bitterman, 2004) and
rats (Miller & Matute, 1996). Although it might be exciting to
make the leap and declare honeybees and rats capable of inferen-

tial reasoning (e.g., Beckers, Miller, De Houwer, & Urushihara,
2006), it is first appropriate to search for a more basic learning
process that produces the backward blocking result.

To explain backward blocking without inferential reasoning,
Van Hamme and Wasserman (1994) adapted the Rescorla-Wagner
model. According to their adapted model, phase one of training
establishes A as a retrieval cue for B—a within-compound associ-
ation. Because of the within-compound association between A and
B, A retrieves B in phase two of the training procedure. Because B
is retrieved but not presented, it loses associative strength to X
acquired in phase one. Van Hamme and Wasserman argue that
backward blocking is this loss of associative strength. Because the
account does not rely on a process of reasoning, it finesses the
problem of attributing complex reasoning to species in which such
capabilities are suspect (e.g., honeybees and rats). Nevertheless,
the account makes three implicit assumptions. First, it assumes that
the learner recognises which cues are absent. Second, it assumes
that the learner distinguishes absent from presented cues. Third, it
assumes that the learner applies different parameters to the absent
and presented cues when updating their respective associative
strengths to the outcome.

Whereas we agree with the thrust of Van Hamme and Wasserman’s
(1994) explanation of backward blocking, their computational
solution is problematic. To simulate backward blocking using the
modified Rescorla-Wagner theory, the absent and presented cues
must be specified for the model and different learning parameters
applied to the two kinds. A more ideal computational solution
would identify the absent and presented cues and, using that
discrimination, accommodate backward blocking. In the next sim-
ulation, we test whether Minerva-AL meets the challenge.

Backward blocking. We simulated a standard backward
blocking procedure. The procedure had two successive training
phases followed by a test. In phase one of training, compound cue
AB was presented followed by outcome X. In phase two of train-
ing, cue A was presented followed by X. Following phase two,
retrieval of X given B was tested. The design included two control
conditions; the full design is described schematically in Table 2. If
Minerva-AL accommodates backward blocking, retrieval of X
given B will be reliably weaker in the backward blocking condition
than in the control conditions.

We simulated the procedure, 25 independent replications of
each condition for each of three levels of the encoding parameter
L. Results of the simulations are presented in Table 2. As shown,
Minerva-AL produced the backward blocking effect: Retrieval of
X given B was smaller in the backward blocking than in the control

Table 2
Simulation of Backward Blocking: Retrieval of X Given B as a Function of L (Standard Errors in Parentheses)

Training Learning rate

Condition Phase 1 Phase 2 Test 0.33 0.67 1.00

Backward blocking 50 AB3 X 50 A3 X X"B .41 (.03) .15 (.04) .04 (.03)
Control (1) 50 AB3 X X"B .64 (.01) .76 (.01) .88 (.01)
Control (2) 50 AB3 X 50 C3 X X"B .66 (.02) .80 (.01) .88 (.01)

Note. Means and standard errors are computed from 25 independent replications of the procedure. Numbers next to cues denote number of trials.
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conditions. As in the simulation of the classical blocking effect, the
size of the backward blocking effect increased as a function of L.

To understand how Minerva-AL solved backward blocking, we
inspected the mechanics of the simulation. In phase one of train-
ing, A was established as a retrieval cue for B (i.e., a within-
compound association). Consequently, in phase two, A retrieved B
into the echo. Because B was retrieved into the echo but B was not
presented, the resulting traces recorded the absence of B (i.e., an
inverse representation of B) paired with the presence of X (i.e., a
positive representation of X). When B was presented at test, it
activated the traces that contained its inverse. But, because the
similarity of B to its inverse is negative and at retrieval each trace
in memory is multiplied by its activation, traces with a negative
representation of B and a positive representation of X were in-
verted (i.e., a trace that joined -B and !X was activated as !B and
–X during retrieval). Summing the inverted traces produced a
negative representation of X in the echo and, thereby, produced the
backward blocking result (i.e., B retrieved -X). It is interesting to
note that the mechanics involved in retrieval produced an inverse
representation of X even though the memory matrix itself con-
tained no inverse representations of X. Minerva-AL suggests that
backward blocking is not an encoding or retrieval effect, but rather
an interaction of the two processes.

Minerva-AL’s explanation of the backward blocking effect (the
formation and exploitation of a within-compound association be-
tween A and B) is consistent up to a point with the one given by
Van Hamme and Wasserman (1994). However, in contrast to Van
Hamme and Wasserman’s model, Minerva-AL describes (a) how
A is established as a retrieval cue for B in phase one of training, (b)
how A consequently retrieves B in phase two of training, (c) how
a violation of the model’s expectation of B in phase two is
represented and encoded to memory, and (d) how the traces in
memory interact in the process of retrieval to produce the back-
ward blocking result. The simulation clarifies how learning about
the A-X contingency in phase two of the procedure causes indirect
learning about the B-X contingency, even though B is not pre-
sented.

Recovery from blocking. A second example of retrospective
revaluation is recovery from blocking. A recovery from blocking
experiment includes three training phases followed by a test. In
phase one of training, A is presented followed by X. In phase two
of training, AB is presented followed by X. In phase three of
training, A is presented alone. Recovery from blocking is observed
when, following all three phases of training, B behaves as a
conditioned exciter of X (e.g., Blaisdell, Gunther, & Miller, 1999).
The result is surprising inasmuch as learning of the B-X relation-

ship is blocked following phase two of training but is later ex-
pressed following extinction of the unblocked cue.

For our purposes, the recovery from blocking result is important
because it demonstrates that an associatively activated cue (i.e., B
in phase three of the procedure) can become a conditioned exciter
rather than a conditioned inhibitor of a presented outcome (as we
demonstrated in our simulation of backward blocking). If
Minerva-AL is to serve as a competent account of retrospective
revaluation, it must handle recovery from blocking.

We applied Minerva-AL to the recovery from blocking proce-
dure. The procedure had three successive training phases followed
by a test. In phase one of training, A was presented followed by X.
In phase two of training, the compound cue, AB, was presented
followed by X. In phase three of training, A was presented alone.
Following phase three, retrieval of X given B was tested. The
design also included two control conditions. All three of the
procedures are described schematically in Table 3. If Minerva-AL
accommodates recovery from blocking, we should observe two
results. First, retrieval of X given B should be greater than zero
(i.e., X"B % 0) in the recovery from blocking condition. Second,
retrieval of X given B should be reliably more positive in the
recovery from blocking condition than in either of the control
conditions.

We conducted 25 independent replications for each of the three
conditions in Table 4 at each of three levels of the encoding
parameter L. As shown in Table 4, Minerva-AL produced the
recovery from blocking effect: Retrieval of X given B was greater
than zero in the recovery condition and was greater in the recovery
condition than in either of the control conditions. The magnitude of
the recovery effect covaried with L.

Our explanation of recovery from blocking follows from the
dynamics of storage and retrieval in Minerva-AL. Phase one
established A as a retrieval cue of X. This learning caused blocking
of the B-X relationship in phase two (see our prior simulation of
blocking in Table 1). In phase three, A retrieved both B and X into
the echo. Because neither B nor X were presented, memory re-
corded A paired with inverse representations of both B and X. At
test, B retrieved the phase three traces (i.e., the !A, "B, "X
traces). Because traces are multiplied by their activations at re-
trieval, the !A, "B, "X traces from phase three were reinverted
at retrieval. Summing the reinverted traces produced a positive
representation of X in the echo. Thus, according to Minerva-AL,
recovery from blocking reflects new learning that B predicts X
over phase three of the training procedure.

Backward conditioned inhibition. We have showed that
Minerva-AL handles backward blocking and recovery from block-

Table 3
Simulation of Recovery From Blocking: Retrieval of X Given B as a Function of L (Standard Errors in Parentheses)

Training Learning rate

Condition Phase 1 Phase 2 Phase 3 Test 0.33 0.67 1.00

Recovery 50 A3 X 50 AB3 X 50 A X"B .38 (.03) .57 (.04) .95 (.02)
Control (1) 50 A3 X 50 AB3 X 50 C X"B .26 (.02) .19 (.02) .15 (.02)
Control (2) 50 A3 X 50 AB3 X X"B .27 (.02) .24 (.02) .16 (.01)

Note. Means and standard errors are computed from 25 independent replications of the procedure. Numbers next to cues denote number of trials.
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ing. We now turn to a third illustration of retrospective revaluation:
backward conditioned inhibition.

Backward conditioned inhibition (“backward inhibition”) is an-
other example of retrospective revaluation. In a backward inhibi-
tion procedure, the learner is presented with pairings of a com-
pound cue, AB, without an outcome. In a subsequent training
phase, one element of the compound (i.e., A) is paired with an
outcome, X. Following phase two of training, the learner behaves
as though B signals the impending absence of X. That is, B behaves
as a conditioned inhibitor of X.

The backward inhibition is important to the study of associative
learning for the same reason that backward blocking and recovery
from blocking are important: the result demonstrates that an un-
presented but associatively activated cue can develop or modulate
its association to a presented outcome.

We applied Minerva-AL to the backward inhibition procedure.
The procedure included two successive training phases followed
by a test. In phase one of training, compound cue AB was pre-
sented followed by nothing. In phase two of training, cue A was
presented followed by X. Following phase two, retrieval of X given
B was tested. The design also included two control conditions (see
Table 4). If Minerva-AL accommodates backward inhibition, we
will observe two results at test. First, in the backward inhibition
condition, retrieval of X given B should be less than zero (i.e.,
X"B & 0). Second, retrieval of X given B should be reliably more
negative in the backward inhibition condition than in either of the
control procedures (see Table 4).

We conducted 25 independent replications for each of the three
conditions in Table 4 at each of three levels of the encoding
parameter L. As shown in Table 4, Minerva-AL produced the
backward inhibition effect. First, retrieval of X given B was less
than zero in the backward inhibition condition. Second, retrieval of
X given B in the backward inhibition condition was less than
retrieval of X given B in both of the control conditions. Finally, the
size of the backward blocking effect increased as a function of L.
In other simulations, we varied the value of L more broadly; the
size of the effect diminished as a function of L however the model
predicted backward conditioned inhibition in all cases.

Recently, Urcelay, Perelmuter, and Miller (2008) evaluated
backward conditioned inhibition using a summation test. Their
procedure included two successive training phases followed by a
test. In phase one of training, AB was presented without an out-
come. Phase two of training involved two intermixed kinds of
trials. On half the trials, A was presented followed by X; on the
remaining trials, C was presented followed by X. At test, retrieval
of X given C, retrieval of X given BC, and retrieval of X given CD
were tested. They reasoned that if B had become a conditioned

inhibitor then X"BC ought to be less than both X"CD and X"C. The
predictions were confirmed in the experiment. We applied
Minerva-AL to Urcelay et al.’s procedure. Minerva-AL made the
appropriate prediction: X"BC & X"CD & X"C. The result held
across values of L.

Minerva-AL’s explanation of backward conditioned inhibition
is consistent with its explanation of backward blocking. In phase
one of training, A was established as a retrieval cue for B (a
within-compound association). Consequently, in phase two of
training, A retrieved B. Because B was retrieved but B was not
presented, a trace stored to memory included a negative represen-
tation of B (i.e., "B) and a positive representation of X. At test,
presenting B to memory caused those traces to invert (i.e., the "B,
!X traces were inverted as !B, "X traces at retrieval). Summing
the activated traces produced an inverse representation of X in the
echo. Thus, like with backward blocking and recovery from block-
ing, Minerva-AL asserts backward conditioned inhibition is nei-
ther an encoding nor retrieval effect but rather falls out of an
interaction between encoding and retrieval.

General Discussion

We adapted an instance-based model of human memory to
simulate retrospective revaluation. In our account, memory records
the events from individual trials. When a cue is presented to
memory, it contacts all traces in parallel and causes each to
become active. Each trace’s activation is a positively accelerated
function of its similarity to the probe. The information retrieved
from memory, the echo, is a weighted sum of the activated traces.
The model’s anticipation that a target outcome is presented or
withheld following presentation of a cue is indexed by comparing
information retrieved in the echo against a target outcome. The ebb
and flow of a cue’s ability to retrieve an outcome from memory is
the process of associative learning.

Minerva-AL accommodates acquisition, extinction, backward
conditioning, blocking, conditioned inhibition, backward blocking,
recovery from blocking, and backward conditioned inhibition—all
by analogy to the process of cued-recall in human memory. Based
on these successes, we argue that an instance-based theory of
human memory that uses expectancy-encoding offers a coherent
explanation of retrospective revaluation. In hindsight, Minerva-
AL’s facility with retrospective revaluation is unsurprising: retro-
spective revaluation involves a process of memory and
Minerva-AL assumes learning is a memorial process (see Bouton
& Moody, 2004, for a review of memory in learning).

There are at least five other computational accounts of retro-
spective revaluation. One account is based on Van Hamme and

Table 4
Simulation of Backward Conditioned Inhibition: Retrieval of X Given B as a Function of L (Standard Errors in Parentheses)

Training Learning rate

Condition Phase 1 Phase 2 Test 0.33 0.67 1.00

Backward inhibition 50 AB3 50 A3 X X"B ".48 (.02) ".73 (.03) ".86 (.01)
Control (1) 50 AB3 X"B .00 (.01) .01 (.01) .00 (.01)
Control (2) 50 AB3 50 C3 X X"B .00 (.01) ".01 (.01) ".01 (.01)

Note. Means and standard errors are computed across 25 independent replications of the procedure. Numbers next to pairings denote number of trials.
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Wasserman’s (1994) modified Rescorla-Wagner account, one is
based on Dickinson and Burke’s (1996; see also Aitken & Dickinson,
2005) modified SOP model, one is based on Miller’s comparator
hypothesis (see Miller & Matzel, 1988; Miller & Schachtman, 1985;
Stout & Miller, 2007), one is based on Ghirlanda’s (2005) elemental
model, and one is based on Daw and Courville’s (2007) Bayesian
model of learning.

According to Van Hamme and Wasserman (1994), retrospective
revaluation follows from the formation of within-compound asso-
ciations. To illustrate, consider backward inhibition. In phase one
of training, A and B are presented together as cues. This establishes
a within-compound association between A and B. Because of the
within-compound association, A retrieves B in phase two of learn-
ing. To force conditioned inhibition, Van Hamme and Wasserman
assign B a negative learning rate (i.e., reflecting the fact that B was
expected but was not presented). Although it is not clear what a
negative learning rate might mean, the explanation accommodates
the result.

According to Dickinson and Burke’s (1996) modified SOP
model, stimuli are composed of elements that are in one of three
states: a high activity state, a low activity state, or an inactive state.
A stimulus with elements in the high activity state acquires posi-
tive associative strength to another stimulus with elements in the
high activity state but acquires negative associative strength to a
stimulus with elements in the low activity state. To explain back-
ward conditioned inhibition, Dickinson and Burke propose that in
phase two of training A retrieves both itself and X into the high
activity state and retrieves B into the low activity state. Because, B
is in the low activity state and X is in the high activity state, the two
develop negative associative strength.

Miller and Schachtman’s (1985) comparator hypothesis pro-
vides another account of retrospective revaluation. To illustrate,
consider the problem of backward inhibition. According to the
comparator model account of backward inhibition, when B is
presented at test, it retrieves both a direct representation of X and
an indirect representation of X: the indirect representation is re-
trieved using A as an intermediary (i.e., B retrieves A which
retrieves X). Indirect representations are antagonistic to direct
representations in the comparator framework and so the strength
and direction of responding reflects the difference in associative
strength between directly and indirectly retrieved representations.
When the indirectly activated representation of X exceeds the
strength of the directly activated representation of X, behaviour
indicative of conditioned inhibition occurs. Because B is never
paired with X in the backward inhibition procedure, the direct
representation of X retrieved by B at test is comparatively weaker
than the indirect representation of X given B that is retrieved
indirectly through A (which was paired with X in training).

Ghirlanda (2005) developed an elemental account of retrospec-
tive revaluation. In his model, a stimulus is represented as a pattern
of activity over a set of units, where A and B activate some units
in common. Because A and B share units, presenting A is related to
presenting B, and vice versa. Because A and B share units, pre-
senting A leads to some learning about B, and vice versa.

Finally, Daw and Courville’s (2007) Bayesian account of learn-
ing, in which they frame the process of learning to processes in a
particle filter, provides yet another explanation of retrospective
revaluation. To explain backward blocking, they argue that after
learning that AB predicts X, learning that A alone predicts X causes

an anticorrelated joint distribution over the weights connecting A
to X and the weights connecting B to X. Because of the negative-
correlation between A’s association to X and B’s association to X,
learning that A predicts X forces the model to learn indirectly that
B predicts the absence of X.

Ideally, one could evaluate the quality of Minerva-AL’s expla-
nation for retrospective revaluation relative to the explanations
from other models. Unfortunately, no published data compel se-
lecting one model over the others. There is, however, a way to
critically evaluate our instance-based account.

Minerva-AL’s unique explanation of retrospective revaluation
leads to novel predictions for learning about associatively acti-
vated cues. To illustrate, consider an extension of the retrospective
revaluation task that includes three successive learning phases. In
phase one, AB is presented followed by X. In phase two, BC is
presented followed by Y. In phase three, CD is presented followed
by Z. In phase one, A becomes a retrieval cue for both B and X. In
phase two, the within-compound association between A and B
causes BC to retrieve a representation of A. Because A is retrieved
but not presented, an inverse representation of A is stored in
combination with positive representations of B, C, and Y. In phase
three, CD retrieves the traces from phase two (including the
inverse representations of A). Because A is retrieved into the echo,
but A is not presented, the inverse representation of A is reinverted
and memory for the trial records a positive representation of A
paired with a positive representation of Z. Thus, following phase
three and assuming no forgetting over trials, Minerva-AL predicts
that A will be a conditioned exciter of X, a conditioned inhibitor of
Y, and a conditioned exciter of Z. We are currently testing the
prediction using a contingency judgement task.

Although we did not design Minerva-AL to do so, the model
speaks to four debates in the study of associative learning. First, it
has proven difficult for theories of associative learning to accom-
modate the recognition of unpresented cues. As we have already
described, Minerva-AL recognised unpresented cues by encoding
violations of its expectations. Second, early theories of associative
learning described the growth of association between cues and
outcomes. However, data indicate that associations grow between
concurrently presented cues as well (i.e., within-compound asso-
ciations). Minerva-AL learns within-compound associations.
Third, there is a contentious debate on whether associative learning
should be modelled as a process of encoding or a process of
retrieval (see Miller & Escobar, 2001, for a discussion of the
learning-performance distinction). Minerva-AL argues that learn-
ing reflects an interaction between encoding and retrieval. Fourth,
a growing body of evidence for instance-like effects in learning
has challenged traditional learning theories that do not represent
instances. Minerva-AL acknowledges the growing body of evi-
dence (e.g., Fagot & Cook, 2006; Griffiths, Dickinson, & Clayton,
1999; Hare & Atkins, 2001; Karte-Teke, De Souza Silva, Huston,
& Dere, 2006).

Despite Minerva-AL’s successes, the theory has limitations.
One limitation follows from the scope of our demonstrations.
Based on the work presented here, we claim that Minerva-AL
stands as a competent account of retrospective revaluation. How-
ever, we do not claim Minerva-AL stands as a general theory of
associative learning. To position Minerva-AL as a competitive and
general theory of associative learning, we would be need to show
it handles a broader array of learning problems, such as renewal,
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stimulus generalization, stimulus discrimination, external inhibi-
tion, superconditioning, latent inhibition, overexpectation, recov-
ery from overexpectation, overshadowing, recovery from over-
shadowing, and discrimination of cues presented singly and in
compound. We are working on generalizing the model to these
other protocols (Jamieson, Crump, & Hannah, 2010).

Another limitation of our account is its rudimentary represen-
tation of the timed presentation of cues and outcomes within a
learning trial. In the simulations we have conducted, we present
the cue (or cues) as a probe to memory, retrieve the echo, and then
encode the events of the trial against the full event vector. Thus,
whereas Minerva-AL can simulate a situation in which the cue (or
cues) precedes the outcome (e.g., the distinction between forward
and backward conditioning), Minerva-AL does not appreciate the
difference between more subtle temporal manipulations, such as
the distinction between delay and trace conditioning. Modelling
the details of timed presentation on learning has been dealt with
elsewhere in both the conditioning (e.g., Dickinson & Burke,
1996; Gallistel & Gibbon, 2000; Sutton & Barto, 1981; Wagner,
1981) and human memory literatures (e.g., Brown, Preece, &
Hulme, 2000; Howard & Kahana, 2002). Developing a mechanism
to simulate details of stimulus timing within the trial presents a
challenge for future work.

Minerva 2 is one of several instance-based theories of human
memory. So, then, why did we choose to build our account based
on Minerva 2? We used Minerva 2 rather than a different theory
for two reasons. First, the theory is simple and provides a clear
method to discuss how storage and retrieval of instances can
predict associative learning. Second, and most importantly, the
Minerva 2 model is important in the study of human memory
because it explains memory of the general based on memory for
the particular. The problem of associative learning poses the same
difficulty for an exemplar account: it is easy to imagine that
memory for instances is at play in learning, but it is not so clear
how memory for the generalities between cues and outcomes
might emerge from the store of instances. By using Minerva 2, we
have illustrated how contingency learning emerges out of the
storage and retrieval of instances, without requiring a second
learning system to compile contingency information. We do not
wish, however, to suggest that an instance-based theory of learning
must take the exact framework of Minerva 2. There are a number
of instance-based models available (e.g., Kruschke, 1992; Vokey
& Higham, 2004) that could achieve similar outcomes from dif-
ferent assumptions.

Minerva-AL is an adaptation of the Minerva 2 model. Because
of that relationship, one might jump to the conclusion that
Minerva-AL extends the reach of the Minerva 2 model to the
domain of associative learning. That conclusion would be in error.
Despite sharing common principles, the Minerva 2 and
Minerva-AL models differ in measurable ways. We emphasise
that Minerva 2 does not predict associative learning and that
Minerva-AL can, in some cases, contradict predictions made from
its parent theory. To integrate the two theories, one might specu-
late that expectancy-encoding operates only in cases where learn-
ing is unintentional or that expectancy-encoding is suppressed in
situations where learning is deliberate. Until we can specify when
expectancy-encoding should be at work and until we can specify a
computational mechanism to control when expectancy-encoding

will influence learning, we remain silent on the point. The inte-
gration of the two theories stands as a challenge for future work.

Résumé

Nous adaptons un modèle d’instance de la mémoire humaine,
Minerva 2, afin de simuler la réévaluation rétrospective. Dans ce
modèle, la mémoire préserve les événements des essais individuels
sous forme de traces séparées. Une cible présentée à la mémoire
contacte toutes les traces en parallèle et active chacune d’entre
elles. L’information récupérée en mémoire est la somme des traces
activées. L’apprentissage est modélisé comme un processus de
rappel indicé; l’encodage est modélisé comme un processus
d’encodage différentiel de caractéristiques inattendues de la cible
(c.-à-d., encodage des attentes). Le modèle s’applique à trois
exemples de réévaluation rétrospective : le blocage inversé, la
récupération du blocage et l’inhibition conditionnée inversée. Ces
travaux intègrent une compréhension de la mémoire humaine et de
l’apprentissage associatif complexe.

Mots-clés : Théorie de l’instance, apprentissage associatif, rééva-
luation rétrospective, Minerva 2
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